
Team 26: Zipcart
Comprehensive Design Review



Team

Jonathan AzevedoRicardo HenriquezRyan Lagasse

2



3



4



5



CDR Deliverables

 Mount system on a shopping cart

 Detect barcodes fully around products

 Remove items as they exit the cart

 Increase power delivered to system

 Create PCB for the power circuit

 Make a fully-featured interface

6



Motor Experiments

• Goal was determine the peak power performance of a single motor

• Procedure
• Used a drill to rotate motor shaft of a single motor at varying speeds 

• Motor was loaded by entire circuit + tested different regulators

• Measured current and voltage of regulator to calculate power

• Results
• L7805ABV = 1.344W @ 1200-1600RPM (approximately)

• L7805CV = 1.458W @ 1200-1600RPM (approximately)**

• Pi Consumption

• Standby  2.5W, 5V, 500mAh

• All Peripherals  4W, 5V, 800mAh





Gears

• Peak power performance @ 
1400 – 1600 RPM 

• Average walking speed: 200 RPM

• Designed an 8:1 gear ratio to 
achieve maximum performance 
•

•

• Gear designed using AutoCAD & 
3D printed in M5

𝑇𝑒𝑒𝑡ℎ𝐴

𝑇𝑒𝑒𝑡ℎ𝐵
=

𝑅𝑃𝑀𝐴

𝑅𝑃𝑀𝐵
= 8 Gear Ratio

𝑇𝑒𝑒𝑡ℎ𝐴 = 64,  𝑇𝑒𝑒𝑡ℎ𝐵 = 8



PCB

• Dimensions: 4.10 x 3.30 inches

• Wires four motors in parallel to 
increase power produced 

• Currently being fabricated; 
expected delivery on April 1st



System Software Overview

• Detection Module (C++) <detect.cpp>

Process frames of video stream to read item barcodes

• AWS Request Handler (Python) <request.py>

Interact with the AWS order database through API requests

• Feedback Controller (Python) <feedback.py>

Signifies system states to the shopper through LEDs

11



Feedback Controller States

• Steady Yellow

System is waiting for QR code to synchronize with user interface on order ID

• Flashing Green

System has read the barcode of an item to be added

• Flashing Orange

System has read the barcode of an item to be removed

• Flashing Red

System has detected that an item was not successfully processed

12



Detection Issues

Accuracy
Range, dependability of scan success

• Best to post-process stream on laptop

• Fairly accurate on Python

• Unquantified success:
single-threaded C++

• Zero success yet: multi-threaded C++

Performance
Frame processing throughput

• Slow on Python (no parallel processing)

• Fast: single-threaded C++

• Faster: multi-threaded C++

• Fastest: single-threaded C++ on laptop

13



Trials with Laptop Post-Processing

Procedure

1. Take raw footage of desired resolution on Raspberry Pi

2. Copy footage over to laptop, convert to MP4

3. Process footage through ZBar, write detection boxes to video

Results

Observed detection between fourteen and twenty-two inches, still.
Up to twenty inches while slowly placing items into cart.

14



C++ Implementation

Issue

Python applications cannot be parallelized (only one core / time)

Assessment

Due to performance metrics and system resource constraints, we need 
to parallelize frame processing.

Decision

Re-implement detection module in C++

15



Single-Threaded Performance Comparison

Test

In one thread, grab one thread then process it iteratively.

Use same OpenCV API functions in both applications.

Run on Raspberry Pi.

Results

Python: 1.45 FPS

C++: 1.85 FPS

16



Task-Decoupled Performance Comparison

Test

In a single thread, grab N = 300 frames and insert them into a queue.

Then, process the N frames until the queue is depleted.

Compare Raspberry Pi to a more performant system (laptop, no GPU).

17

Results Raspberry Pi Dell Inspiron i5 Laptop

Producer 5.35 FPS / 56 seconds 15.51 FPS / 19 seconds

Consumer 3.15 FPS / 95 seconds 113.58 FPS / 2.6 seconds



Detection Approach for FPR

• Consider purchasing a more powerful computing platform

• Work on issues with multi-threaded accuracy

Need to perform more debugging to find root cause

18



Interface Specifications

• Start a new order

• View balance and list of items in the order in near-real time

• Process payment

• Complete transaction

19



Graphical User Interface

20

ORDER ID



Demo Overview

• Servo mounting, gears

• Emulated system demo with functional user interface (no detection)

• Experimental detection samples and measurements

• Versions of detection implementation, tradeoffs, and approach

• Q&A

21



FPR Deliverables

1. Fix detection

2. Remove items as they exit the cart

3. Populate PCB

4. Wire motors, battery, and Pi to cart

5. Integrate product info into app

22


